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The moire method is widely used in experiments studying the processes of mechanical 
metal working, and is described in detail in the literature. Quasistatic and nonstationary 
deformation of transparent bodies has been studied using the moire method [i, 2]. This 
method was first used by us in [3] to analyze dynamic processes (specifically, spallation) 
in metal plates. The moire method makes it possible to qualitatively and quantitatively 
estimate the stress-strain state of a plate during staged or single-pass loading. In combi- 
nation with other experiments and numerical calcualtions, the method helps to explain not 
only the character of the deformation, but also the failure processes which occur during 
mechanical working of metals. 

In this work, we present a system solving the equations for a description of the stress- 
strain state of the body, with the help of experimental information based on the moire method, 
at large plastic strains during staged loading. We introduce an example of deformation and 
failure of an aluminum plate during its interaction with a rigid cylindrical open die. 

i. For staged loading of an elastic-plastic bod$, we examine three basic configurations: 
initial (natural) with location radius-vector Or = ~ current (stage n - i), r = alei, 

and current (stage n) B = xiei �9 Here e i are unit orthogonal reference vectors, which are 

independent of the coordinates. 

The unloading configuration is not studied, since it is impossible to distinguish be- 
tween the elastic and plastic displacement components in the experiment, due to the great 
nonuniformity of the strains throughout the volume of the body. We will only assume that for 
any stage of the deformation, it is possible to neglect the elastic displacements and their 
gradients in comparison with their plastic counterparts. 

Let us suppose that the moire method makes it possible to determine the total increment 
in the displacements between loading stages at any point in a given region of the body. 
Sometimes this assumption is valid, for example, during axisymmetric deformation, or the 
application of a raster on ameridional section inside a body [3]. 

Thus, during application of stage n of a deformable raster initially, and on a deformed 
raster of stage n - i, we have a displacement field ~ with respect to the initial state in 
coordinates x I, and (incremental) displacement field u respect to the n - 1 configuration, 
also in coordinates xi: 

R(xi) = ~176 ~- ~ R(xi) = r(ai) + u(xt)" (1 .  I) 

We introduce the local reference vectors 

f R i  = ---:~x ~ = e i ,  r~ = --~az ~ = R i  - -  --oz ~ = Rj ~6ii ~ ~" ( 1o 2 ) 

The physical meaning of the second relation in (1.2) lies in the existance of an arbitrary 
set of reference vectors ri, frozen in the material, such that during motion, u(x i) trans- 
forms to the orthonormal basis R i. 

We introduce the Hami!tonian operator in the current configurations n - 1 and n [4]: 
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= r i o V = R i o 
ox i '  ox ---i ( i. 3 ) 

(r i, R i are the bases related to ri, Hi)- 

Applying operator (1.3) to the vector location in configurations n - i and n, we obtain 
the tensor gradients 

V r = r r  i : E ,  V R : r R i ,  V r : R ri ,  V R : R t R i  = E,  

where E, E are the matrix tensors in configurations n - 1 and n. Specifically, E = 5ijeiej. 

We introduce the Almanza measure of strain in the current configuration n with respect 
to that of the n - I and the natural configurations: 

g : V r "  v r L ~  : V  ~  V ~ ( 1 . 4 )  

The stress state in the strained configuration n is characterized by the Cauchy stress 

tensor T = tSkRsR k, which, in the absence of body forces, satisfies the equilibrium equation 

v ' T  = 0 .  ( 1 . 5 )  

The general expression for the connection between stresses and strains is usually 

written in the form [4] T = F(VR), However, in this case it is not possible to apply such a 
formula, since the Cauchy-Green strain is a unit tensor G =VR. VR T = 8or~. This follows 

from the choice of basis Hi, in configuration n, which plays the role of a reference frame. 

Therefore, we will write the governing relations in the form 

T = F(VO. ( 1 . 6 )  

After a series of transformations, the requirement of material indifference of stress 
tensor T results in the following expression for (1.6): 

T = O -  F(V) �9 O T. ( 1 . 7 )  

Here, Ois an orthogonal tensor, associated with the strain; V is a positive-definite symme- 
tric tensor. 

Note that the expression for polar expansion of the gradient of the position V r = O �9 V 
does not coincide with the notation of the traditional expression [4], where the position 
gradient VR is expanded. 

2. We introduce an expression for the stress tensor T of the n-th stage by means of the 
state in the preceding stage. We use the approach, expounded in [5], which includes the ex- 
pansion of (1.7) in a series. Unlike [5], we account for terms of second order in the expan- 
sion. This makes it possible to use the expansion for the small but finite transformation 
from configuration n - 1 to n. Applying the operator V on the second relation in (i.i), we 
obtain V r = E--VU. Assuming the relative proximity of configurations n - 1 and n, we write 
the latter relation in the form V r = E--SV u (6 is a small parameter). 

We expand all kinematic variables in (1.7) in a series in 6 and keep terms of order 
~6 2 So, for the definition of V, we use the relation 

(V) ~ = V rT �9 V r : E - -  (VU + VU~)6 + V u~ " V u62--~ f(6), 

o v ( 6 = 0 )  6 +  i o 2 v . o  0) 6 2, v ~.. v (6 = o) + ~-  ~ o~-~o = 

which, after transformation, gives 

V=E--~6+ ~(~.Q--~.~--~2) 62 

~-(v~ + r e ) ,  ~ = T ( v ~ -  (~ = ~  ~ Vu~)). 

(Z.l) 
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Similarly, we define O from the equation O �9 V = E -- 6VU: 

O = E - -  ~ + l ( f p _  e . ~ - -  f~.e)6 ~. ( 2 . 2 )  

The expansion for F has the form 

L~ (~) ~, F(V) ,~Tn-~- -Lo"e~  + 

where Tn_ I is the Cauchy stress tensor in configuration n - i; L0 
L= is a tensor-operator of second rank, which is nonlinear in ~. 

Substituting (2.1)-(2.3) into (1.7) and transforming, we obtain a relation between the 
stresses in configurations n and n - 1 (the symbol 6 is omitted): 

(2.3) 

is a tensor of rank four; 

Tn ,-~ T~-I -- ~ 'T~-I  + T~-x'~ -- Lo" "$ + ~'Lo" . e - -  L o. .e .~  + (2 .4 )  
i i 

+ 7 L2 (e)--Q. T~_I. ~ + ~ (~z--e. Q--Q. e). Tn-~ + ~ Tn-r  (~2 + e. ~ + ~. e). 

Here, terms with Q govern the influence of rotation on the change in the components of the 
"frozen-in" tensor Tn_1; terms L0..8 and (I/2)L2(~) determine the contribution of pure 

strains; the remaining terms are mutual influence of pure strains and rotations between con- 
figurations n - 1 and n. 

In (2.4), when accounting for only terms linear in d and in the absence of pure defor- 
mations e ~ 0, there is a difference in sign from the commonly used expression [4, 6]. This 
is explained by the choice of configurations and the system of basis vectors: in the moire 
method, the displacement field u(x i) is known in the coordinates x i of configuration n, dur- 
ing the transformation from configuration n - 1 to n. 

All quantities in (2.4) are relative to the basis R i. To transform to the next stage, 
there is a change in configuration. Therefore, for the application of(2.4), the tensor Tn_1, 
which was determined in the basis rl in the preceding step, must be transformed to the basis 
Ri: Tn-i = t~Jlrir j = Rt~JIRiR j (Rt~] l are components of the tensor T in configuration n - 1 

with respect to the basis of configuration n). Using (1.2), we find 

~u h Ou s 
R,hs ks ,k j  ~u__j t ~s 8u~ + t~C1 ( 2 . 5 )  

~n--~ = tn--~ - -  ~n--~ OzJ - -  n--x Ox--" T Oz i Ox i �9 

3. We distinguish between the spherical and deviatoric parts of these tensors: 

t 

T = p E + T ' ,  L o . . e = / o ( e ) E + L o . . e ,  L2(e)=l~(e)E+L~(e) ,  

substitute this into (2.4), and transforming, obtain 

i 
Pn = P n - 1  - -  lo (e) + ~ l 2 (~); (3.1) 

p r t 

T~ = T~_ 1 + T',~_I. f l -  ~ . T n - 1 -  L o . . e  + ~ ' L o . . 8  - - L o . . e . f l  + 

l , 4 ' + - f  L~(e)-- fl.T'n_rfl + -- ( fP- -  e -Q- -  f~'~).Tn-1 + 

i T:_r(f~2 + e.fl + f~-S)o +-~- 

Reiation (3.1) shows that rotation does not influence the mean pressure p. Therefore, in 
the case of a stressed state which is close to hydrodynamic, accounting for the rotation of 
material particles in the medium does not lead to a significant correction. 

The terms s and L~ in (3.1), (3.2) reflect physical nonlinearity. However, over a 
large range of pressures s << E0 [7] Taking the term L' into account is necessary for ' " 2 

' | • 
materials which exhibit inelastic properties. We introduce the notation L' --- -L0.-~, + 

L~ (8). 
Following [8], we write for the variation in flow theory 

(3.2)  

de~ ---- d)~S~j, dAp  = S i jde~  = 2dLcJ~, 
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where e = dev(g); clAp is the incremental work of plastic deformation; o u is the intensity of 

the tangential stresses; Sij are components of the tensor T'. Since dAp = oud~ then 

(3.3) 

Increments de p. and de p have the sense of deformations e p = dev (~P) and correspondingly ~3 u 
euP(eP), obtained in terms of the displacement field u. Then, (3.3) transforms into 

L' = 2e ~(0%) (3.4) 

where the index p has been omitted. 

To compute ~ u in (3.4), it is necessary to use the measure of strain 0g, which is deter- 
mined by the gradient of the displacement ~ Such an approach increases the amount of 
processed information by a factor of two. Another method of obtaining a measure of the total 
strain is to sum the strain tensors by stages with the appropriate transformation to the 
basis of the current configuration, in analogy to (2.5). This, however, increases the error 
which accumulates with each stage. 

Relations (3.1) and (3.2) can be used in numerical algorithms to determine the stresses. 
When the initial information is determined with the help of the moire method, the use of (3.1) 
is unjustified, for two reasons. In the first place, the error in the volume strains exceeds 
the value of the initial data. Secondly, after unloading, the volume strain is partially lost 
(complete unloading does not give residual stresses, which arise due to strong nonuniformities 
in plastic deformation throughout the volume of the body). Therefore, we use the method of 
seeking the mean pressure p with the help of the equilibrium equation (1.5), a method commonly 
used in mechanical metal working. Using T = pE + T', we transform (1.5): 

V �9 ( p E )  = - - V  �9 T ' .  ( 3 . 5 )  

Having previously determined the stress deviator tensor T' in configuration n according 
to (3.2), (3.4), we reduce the problem of determining p to integration of one of the differen- 
tial equations in (3.5). The use of (3.5) introduces additional error in the determination of 
p, and thus in determining the normal components of the stress tensor in comparison to the 
strain and the stress deviator tensors. The additional error is introduced through the opera- 
tion V " T', which assumes yet another numerical differentiation. 

4. Processing of the experimental information is done in the "moire" complex of programs, 
created specifically for this purpose. The complex includes modules for the reconstruction 
of displacements A, calclation of strains B, calculation of stresses C, and a graphics module 
D. All of the programs are formulated as independent subprograms, and can be used individually. 
The programs were created for the BESM-6 computer, and have been adapted to run on ES machines. 

The input to module A consists of the coordinates (rk, Zk) of the points of the moire 
bands, the values of the displacements U k in the bands, and the coordinates of the boundary 
of the region G. We have as output from the module the mesh functions uij, defined at the 
nodes of the rectangular mesh (i, j) inside G. Reconstruction of the values of uij is done 
with the help of two-dimensional splines of degree one [9], by the choice of optimal triangles 
containing the point (i, j). The numerical differentiation in module B is based on rational 
splines [9]. When the experimental information is limited and errors are introduced, the 
procedure of linear filtering is used to suppress nonphysical oscillations in the function U. 
Module A uses about 80% of the total time required for information processing. 

The input of experimental information is accomplished by various means, mentioned in [3], 
including a semi-automated input regime into the computer. 

5. As an example, we examine the results of analysis of moire patterns obtained after 
impact of a rigid cylindrical open die with plane ends on an aluminum plate. The method used 
in the experiment is similar to that in [3]. Figure 1 shows the moire pattern representing 
lines of equal axial (a) and radial (b) displacements. Directly under the die is a zone which 
is insensitive to moire effect. 
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Fig. 1 Fig. 2 

Fig. 3 

Processing of the experimental information by the "moire" complex makes it possible to 
determine all components of the tensors A and T. In all of the drawings, a contour line shows 
the position of the striker and delimits the boundary of the processed region. The back sur- 
face is located in the neighborhood of the origin of the coordinates and the vertical axis. 

From the analysis, it is clear that the axial compression strain Azz is distributed under 
the die, and along the side walls of the crater Azz > 0. The maximum elongation, equal to 
17%, is attained near the front surface of the plate in the "peta!ling" region, which is 
caused by the inertial ejection of material. The radial strain Arr is negative almost every- 
where, with a minimum near the side walls of the crater. A modest elongation (-5%) is ob- 
served at the rear bulge of the plate under the die. 

Figure 2 shows contours of shear strain Arz: the numbers 1-9 corresponds to strain 
levels frlom -20 to +60%, in steps of 10%. The maximum value (-76%) is attained near the 
crater angles, where shear cracks are then formed. The large shears are localized :in a region 
not more than 5 mm wide, through which shears on the order of 30% emerge at the rear surface. 

The surface of intensity of the shear strains is illustrated in Fig. 3 (the zone of moire 
insensitivity is depicted by the zero level (the flat area)). The maximum value (90%) is 
reached near the crater angles, as in the case of the components Arz. The strain intensity 
is localized in the neighborhoodof the cylindrical surface, along which the plug forms. 
Comparison of Figs. 2 and 3 show that the shear strain makes the primary contribution to the 
strain intensity. 

We can draw the following conclusions from an analysis of the stresses. All normal 
stresses directly under the crater and near its lateral surfaces are negative, reaching -0.8 
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GPa (under the crater) and 1.3 GPa (near the lateral surface). At the back surface, the 
circumferential and radial stresses are positive (~0.2-0.3 GPa), which can lead to the 
formation of cracks at either the bulge tip, or at a distance of 1.5-2 die radii from the 
axis of symmetry. Only shear cracks can form inside the plate. This system of cracks is 
located in the neighborhood of the maximum tangential stress. 

Figure 4 shows contours of the tangential stress field. The numbers 2-6 correspond to 
levels frlom -0.2 to +0.2 GPa in steps of 0.i GPa. Contour number 1 corresponds to 0.25 
GPa, number 7 to 0.25 GPa. The final form of the crack differs from a straight line, due to the 
application of subsequent deformation in the course of penetration and rotation of material 
particles. The brittle failure cracks inside the plate can be formed, evidently, in the 
initial stages of penetration, as a result of the interaction of the stress waves. 

In conclusion, we note that representation of the data on the character of plate defor- 
mation of the crater during penetration is obtained for the first time with the help of the 
moire method. The method devised here can be used to study various quasistatic processes 
with staged loading, for example, in mechanical metal working, the study of technological 
operations, and so on. 
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